home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
CU Amiga Super CD-ROM 15
/
CU Amiga Magazine's Super CD-ROM 15 (1997)(EMAP Images)(GB)[!][issue 1997-10].iso
/
CUCD
/
Graphics
/
Ghostscript
/
source
/
gdevmgr.c
< prev
next >
Wrap
C/C++ Source or Header
|
1997-06-20
|
14KB
|
434 lines
/* Copyright (C) 1992, 1993, 1994 Aladdin Enterprises. All rights reserved.
This file is part of Aladdin Ghostscript.
Aladdin Ghostscript is distributed with NO WARRANTY OF ANY KIND. No author
or distributor accepts any responsibility for the consequences of using it,
or for whether it serves any particular purpose or works at all, unless he
or she says so in writing. Refer to the Aladdin Ghostscript Free Public
License (the "License") for full details.
Every copy of Aladdin Ghostscript must include a copy of the License,
normally in a plain ASCII text file named PUBLIC. The License grants you
the right to copy, modify and redistribute Aladdin Ghostscript, but only
under certain conditions described in the License. Among other things, the
License requires that the copyright notice and this notice be preserved on
all copies.
*/
/* gdevmgr.c */
/* MGR device driver */
#include "gdevprn.h"
#include "gdevpccm.h"
#include "gdevmgr.h"
/* Structure for MGR devices, which extend the generic printer device. */
struct gx_device_mgr_s {
gx_device_common;
gx_prn_device_common;
/* Add MGR specific variables */
int mgr_depth;
};
typedef struct gx_device_mgr_s gx_device_mgr;
static struct nclut clut[256];
private unsigned int clut2mgr(P2(int, int));
private void swap_bwords(P2(unsigned char *, int));
/* ------ The device descriptors ------ */
/*
* Default X and Y resolution.
*/
#define X_DPI 72
#define Y_DPI 72
/* Macro for generating MGR device descriptors. */
#define mgr_prn_device(procs, dev_name, num_comp, depth, mgr_depth,\
max_gray, max_rgb, dither_gray, dither_rgb, print_page)\
{ prn_device_body(gx_device_mgr, procs, dev_name,\
DEFAULT_WIDTH_10THS, DEFAULT_HEIGHT_10THS, X_DPI, Y_DPI,\
0, 0, 0, 0,\
num_comp, depth, max_gray, max_rgb, dither_gray, dither_rgb,\
print_page),\
mgr_depth\
}
/* For all mgr variants we do some extra things at opening time. */
/* private dev_proc_open_device(gdev_mgr_open); */
#define gdev_mgr_open gdev_prn_open /* no we don't! */
/* And of course we need our own print-page routines. */
private dev_proc_print_page(mgr_print_page);
private dev_proc_print_page(mgrN_print_page);
private dev_proc_print_page(cmgrN_print_page);
/* The device procedures */
private gx_device_procs mgr_procs =
prn_procs(gdev_mgr_open, gdev_prn_output_page, gdev_prn_close);
private gx_device_procs mgrN_procs =
prn_color_procs(gdev_mgr_open, gdev_prn_output_page, gdev_prn_close,
gx_default_gray_map_rgb_color, gx_default_gray_map_color_rgb);
private gx_device_procs cmgr4_procs =
prn_color_procs(gdev_mgr_open, gdev_prn_output_page, gdev_prn_close,
pc_4bit_map_rgb_color, pc_4bit_map_color_rgb);
private gx_device_procs cmgr8_procs =
prn_color_procs(gdev_mgr_open, gdev_prn_output_page, gdev_prn_close,
mgr_8bit_map_rgb_color, mgr_8bit_map_color_rgb);
/* The device descriptors themselves */
gx_device_mgr far_data gs_mgrmono_device =
mgr_prn_device( mgr_procs, "mgrmono", 1, 1, 1, 1, 0, 2, 0, mgr_print_page);
gx_device_mgr far_data gs_mgrgray2_device =
mgr_prn_device(mgrN_procs, "mgrgray2",1, 8, 2, 255, 0, 4, 0, mgrN_print_page);
gx_device_mgr far_data gs_mgrgray4_device =
mgr_prn_device(mgrN_procs, "mgrgray4",1, 8, 4, 255, 0,16, 0, mgrN_print_page);
gx_device_mgr far_data gs_mgrgray8_device =
mgr_prn_device(mgrN_procs, "mgrgray8",1, 8, 8, 255, 0, 0, 0, mgrN_print_page);
gx_device_mgr far_data gs_mgr4_device =
mgr_prn_device(cmgr4_procs, "mgr4", 3, 8, 4, 1, 1, 4, 3, cmgrN_print_page);
gx_device_mgr far_data gs_mgr8_device =
mgr_prn_device(cmgr8_procs, "mgr8", 3, 8, 8, 255, 255, 6, 5, cmgrN_print_page);
/* ------ Internal routines ------ */
/* Define a "cursor" that keeps track of where we are in the page. */
typedef struct mgr_cursor_s {
gx_device_mgr *dev;
int bpp; /* bits per pixel */
uint line_size; /* bytes per scan line */
byte *data; /* output row buffer */
int lnum; /* row within page */
} mgr_cursor;
/* Begin an MGR output page. */
/* Write the header information and initialize the cursor. */
private int
mgr_begin_page(gx_device_mgr *bdev, FILE *pstream, mgr_cursor _ss *pcur)
{ struct b_header head;
uint line_size =
gdev_prn_raster((gx_device_printer *)bdev) + 3;
byte *data = (byte *)gs_malloc(line_size, 1, "mgr_begin_page");
if ( data == 0 )
return_error(gs_error_VMerror);
/* Write the header */
B_PUTHDR8(&head, bdev->width, bdev->height, bdev->mgr_depth);
fprintf(pstream, "");
if ( fwrite(&head, 1, sizeof(head), pstream) < sizeof(head) )
return_error(gs_error_ioerror);
fflush(pstream);
/* Initialize the cursor. */
pcur->dev = bdev;
pcur->bpp = bdev->color_info.depth;
pcur->line_size = line_size;
pcur->data = data;
pcur->lnum = 0;
return 0;
}
/* Advance to the next row. Return 0 if more, 1 if done. */
private int
mgr_next_row(mgr_cursor _ss *pcur)
{ if ( pcur->lnum >= pcur->dev->height )
{ gs_free((char *)pcur->data, pcur->line_size, 1,
"mgr_next_row(done)");
return 1;
}
gdev_prn_copy_scan_lines((gx_device_printer *)pcur->dev,
pcur->lnum++, pcur->data, pcur->line_size);
return 0;
}
/* ------ Individual page printing routines ------ */
#define bdev ((gx_device_mgr *)pdev)
/* Print a monochrome page. */
private int
mgr_print_page(gx_device_printer *pdev, FILE *pstream)
{ mgr_cursor cur;
int mgr_wide;
int code = mgr_begin_page(bdev, pstream, &cur);
if ( code < 0 ) return code;
mgr_wide = bdev->width;
if (mgr_wide & 7)
mgr_wide += 8 - (mgr_wide & 7);
while ( !(code = mgr_next_row(&cur)) )
{ if ( fwrite(cur.data, sizeof(char), mgr_wide / 8, pstream) <
mgr_wide / 8)
return_error(gs_error_ioerror);
}
return (code < 0 ? code : 0);
}
/* Print a gray-mapped page. */
static unsigned char bgreytable[16], bgreybacktable[16];
static unsigned char bgrey256table[256], bgrey256backtable[256];
/* private */
int
mgrN_print_page(gx_device_printer *pdev, FILE *pstream)
{ mgr_cursor cur;
int i = 0, j, k, mgr_wide;
uint mgr_line_size;
byte *bp, *data = NULL, *dp;
int code = mgr_begin_page(bdev, pstream, &cur);
if ( code < 0 ) return code;
mgr_wide = bdev->width;
if ( bdev->mgr_depth == 2 && mgr_wide & 3 )
mgr_wide += 4 - (mgr_wide & 3);
if ( bdev->mgr_depth == 4 && mgr_wide & 1 )
mgr_wide++;
mgr_line_size = mgr_wide / ( 8 / bdev->mgr_depth );
if ( bdev->mgr_depth == 4 )
for ( i = 0; i < 16; i++ ) {
bgreytable[i] = mgrlut[LUT_BGREY][RGB_RED][i];
bgreybacktable[bgreytable[i]] = i;
}
if ( bdev->mgr_depth == 8 ) {
for ( i = 0; i < 16; i++ ) {
bgrey256table[i] = mgrlut[LUT_BGREY][RGB_RED][i] << 4;
bgrey256backtable[bgrey256table[i]] = i;
}
for ( i = 16,j = 0; i < 256; i++ ) {
for ( k = 0; k < 16; k++ )
if ( j == mgrlut[LUT_BGREY][RGB_RED][k] << 4 ) {
j++;
break;
}
bgrey256table[i] = j;
bgrey256backtable[j++] = i;
}
}
if ( bdev->mgr_depth != 8 )
data = (byte *)gs_malloc(mgr_line_size, 1, "mgrN_print_page");
while ( !(code = mgr_next_row(&cur)) )
{
switch (bdev->mgr_depth) {
case 2:
for (i = 0,dp = data,bp = cur.data; i < mgr_line_size; i++) {
*dp = *(bp++) & 0xc0;
*dp |= (*(bp++) & 0xc0) >> 2;
*dp |= (*(bp++) & 0xc0) >> 4;
*(dp++) |= (*(bp++) & 0xc0) >> 6;
}
if ( fwrite(data, sizeof(byte), mgr_line_size, pstream) < mgr_line_size )
return_error(gs_error_ioerror);
break;
case 4:
for (i = 0,dp = data, bp = cur.data; i < mgr_line_size; i++) {
*dp = bgreybacktable[*(bp++) >> 4] << 4;
*(dp++) |= bgreybacktable[*(bp++) >> 4];
}
if ( fwrite(data, sizeof(byte), mgr_line_size, pstream) < mgr_line_size )
return_error(gs_error_ioerror);
break;
case 8:
for (i = 0,bp = cur.data; i < mgr_line_size; i++, bp++)
*bp = bgrey256backtable[*bp];
if ( fwrite(cur.data, sizeof(cur.data[0]), mgr_line_size, pstream)
< mgr_line_size )
return_error(gs_error_ioerror);
break;
}
}
if (bdev->mgr_depth != 8)
gs_free((char *)data, mgr_line_size, 1, "mgrN_print_page(done)");
if (bdev->mgr_depth == 2) {
for (i = 0; i < 4; i++) {
clut[i].colnum = i;
clut[i].red = clut[i].green = clut[i].blue = clut2mgr(i, 2);
}
}
if (bdev->mgr_depth == 4) {
for (i = 0; i < 16; i++) {
clut[i].colnum = i;
clut[i].red = clut[i].green = clut[i].blue = clut2mgr(bgreytable[i], 4);
}
}
if (bdev->mgr_depth == 8) {
for (i = 0; i < 256; i++) {
clut[i].colnum = i;
clut[i].red = clut[i].green = clut[i].blue = clut2mgr(bgrey256table[i], 8);
}
}
#if !arch_is_big_endian
swap_bwords( (unsigned char *) clut, sizeof( struct nclut ) * i );
#endif
if ( fwrite(&clut, sizeof(struct nclut), i, pstream) < i )
return_error(gs_error_ioerror);
return (code < 0 ? code : 0);
}
/* Print a color page. */
private int
cmgrN_print_page(gx_device_printer *pdev, FILE *pstream)
{ mgr_cursor cur;
int i = 0, j, mgr_wide, r, g, b, colors8 = 0;
uint mgr_line_size;
byte *bp, *data, *dp;
ushort prgb[3];
unsigned char table[256], backtable[256];
int code = mgr_begin_page(bdev, pstream, &cur);
if ( code < 0 ) return code;
mgr_wide = bdev->width;
if (bdev->mgr_depth == 4 && mgr_wide & 1)
mgr_wide++;
mgr_line_size = mgr_wide / (8 / bdev->mgr_depth);
data = (byte *)gs_malloc(mgr_line_size, 1, "cmgrN_print_page");
if ( bdev->mgr_depth == 8 ) {
memset( table, 0, sizeof(table) );
for ( r = 0; r <= 6; r++ )
for ( g = 0; g <= 6; g++ )
for ( b = 0; b <= 6; b++ )
if ( r == g && g == b )
table[ r + (256-7) ] = 1;
else
table[ (r << 5) + (g << 2) + (b >> 1) ] = 1;
for ( i = j = 0; i < sizeof(table); i++ )
if ( table[i] == 1 ) {
backtable[i] = j;
table[j++] = i;
}
colors8 = j;
}
while ( !(code = mgr_next_row(&cur)) )
{
switch (bdev->mgr_depth) {
case 4:
for (i = 0,dp = data, bp = cur.data; i < mgr_line_size; i++) {
*dp = *(bp++) << 4;
*(dp++) |= *(bp++) & 0x0f;
}
if ( fwrite(data, sizeof(byte), mgr_line_size, pstream) < mgr_line_size )
return_error(gs_error_ioerror);
break;
case 8:
for (i = 0,bp = cur.data; i < mgr_line_size; i++, bp++)
*bp = backtable[*bp] + MGR_RESERVEDCOLORS;
if ( fwrite(cur.data, sizeof(cur.data[0]), mgr_line_size, pstream) < mgr_line_size )
return_error(gs_error_ioerror);
break;
}
}
gs_free((char *)data, mgr_line_size, 1, "cmgrN_print_page(done)");
if (bdev->mgr_depth == 4) {
for (i = 0; i < 16; i++) {
pc_4bit_map_color_rgb((gx_device *)0, (gx_color_index) i, prgb);
clut[i].colnum = i;
clut[i].red = clut2mgr(prgb[0], 16);
clut[i].green = clut2mgr(prgb[1], 16);
clut[i].blue = clut2mgr(prgb[2], 16);
}
}
if (bdev->mgr_depth == 8) {
for (i = 0; i < colors8; i++) {
mgr_8bit_map_color_rgb((gx_device *)0, (gx_color_index)
table[i], prgb);
clut[i].colnum = MGR_RESERVEDCOLORS + i;
clut[i].red = clut2mgr(prgb[0], 16);
clut[i].green = clut2mgr(prgb[1], 16);
clut[i].blue = clut2mgr(prgb[2], 16);
}
}
#if !arch_is_big_endian
swap_bwords( (unsigned char *) clut, sizeof( struct nclut ) * i );
#endif
if ( fwrite(&clut, sizeof(struct nclut), i, pstream) < i )
return_error(gs_error_ioerror);
return (code < 0 ? code : 0);
}
/* Color mapping routines for 8-bit color with a fixed palette */
/* (3 bits of R, 3 bits of G, 2 bits of B). */
/* We have to trade off even spacing of colors along each axis */
/* against the desire to have real gray shades; */
/* MGR compromises by using a 7x7x4 "cube" with extra gray shades */
/* (1/6, 1/2, and 5/6), instead of the obvious 8x8x4. */
gx_color_index
mgr_8bit_map_rgb_color(gx_device *dev, gx_color_value r, gx_color_value g,
gx_color_value b)
{ uint rv = r / (gx_max_color_value / 7 + 1);
uint gv = g / (gx_max_color_value / 7 + 1);
uint bv = b / (gx_max_color_value / 7 + 1);
return (gx_color_index)
(rv == gv && gv == bv ? rv + (256-7) :
(rv << 5) + (gv << 2) + (bv >> 1));
}
int
mgr_8bit_map_color_rgb(gx_device *dev, gx_color_index color,
gx_color_value prgb[3])
{ static const gx_color_value ramp[8] =
{ 0, gx_max_color_value / 6, gx_max_color_value / 3,
gx_max_color_value / 2, 2 * (gx_max_color_value / 3),
5 * (gx_max_color_value / 6), gx_max_color_value,
/* The 8th entry is not actually ever used, */
/* except to fill out the palette. */
gx_max_color_value
};
#define icolor (uint)color
if ( icolor >= 256-7 )
{ prgb[0] = prgb[1] = prgb[2] = ramp[icolor - (256-7)];
}
else
{ prgb[0] = ramp[(icolor >> 5) & 7];
prgb[1] = ramp[(icolor >> 2) & 7];
prgb[2] = ramp[(icolor & 3) << 1];
}
#undef icolor
return 0;
}
/* convert the 8-bit look-up table into the standard MGR look-up table */
private unsigned int
clut2mgr(
register int v, /* value in clut */
register int bits /* number of bits in clut */
)
{
register unsigned int i;
i = (unsigned int) 0xffffffff / ((1<<bits)-1);
return((v*i)/0x10000);
}
/*
* s w a p _ b w o r d s
*/
private void
swap_bwords(register unsigned char *p, int n)
{
register unsigned char c;
n /= 2;
for (; n > 0; n--, p += 2) {
c = p[0];
p[0] = p[1];
p[1] = c;
}
}